How to use pandas to compute rolling cumulative distinct count over past 24 hrs?

bởi

trong

To compute a rolling cumulative distinct count over the past 24 hours using Pandas, you need to use the rolling method in combination with a custom aggregation function. Here’s a step-by-step guide on how to achieve this:

  1. Import Pandas and Create Sample Data:
    Ensure you have Pandas installed and then create a DataFrame with a timestamp column and the values you want to count distinctly.
  2. Set the Timestamp Column as the Index:
    Convert the timestamp column to a Pandas datetime type and set it as the index.
  3. Define a Custom Function for Rolling Distinct Count:
    Create a custom aggregation function that counts the number of distinct elements in a given window.
  4. Apply the Rolling Window:
    Use the rolling method with a 24-hour window and apply your custom function.

Here is a complete example:

import pandas as pd
import numpy as np

# Sample data
data = {
    'timestamp': pd.date_range(start='2023-01-01', periods=100, freq='H'),
    'value': np.random.randint(1, 20, 100)  # Random values between 1 and 20
}
df = pd.DataFrame(data)

# Convert timestamp to datetime and set it as the index
df['timestamp'] = pd.to_datetime(df['timestamp'])
df.set_index('timestamp', inplace=True)

# Define a custom aggregation function for counting distinct values
def rolling_cumulative_distinct_count(window):
    return window.apply(lambda x: x.nunique())

# Compute the rolling cumulative distinct count over the past 24 hours
# Note: '24H' denotes a 24-hour rolling window
result = df['value'].rolling('24H').apply(lambda x: x.nunique(), raw=False)

print(result)

Explanation:

  1. Sample Data: We create a DataFrame with a timestamp and some random values.
  2. Datetime Conversion: We ensure the timestamp column is in datetime format and set it as the index to enable time-based rolling operations.
  3. Custom Aggregation Function: We define a lambda function within the apply method to count distinct values within each window.
  4. Rolling Window: We use the rolling method with a ’24H’ window to indicate a 24-hour period. The apply method with the custom function is then used to calculate the number of distinct values within each window.

This approach allows you to compute a rolling cumulative distinct count for each hour, considering the past 24 hours of data. Adjust the freq parameter in pd.date_range and the rolling window parameter ’24H’ as needed for your specific use case.


Bình luận

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *